Globally Convergent Variable Metric Method for Convex Nonsmooth Unconstrained Minimization1

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Globally Convergent Cutting Plane Method for Nonconvex Nonsmooth Minimization

Nowadays, solving nonsmooth (not necessarily differentiable) optimization problems plays a very important role in many areas of industrial applications. Most of the algorithms developed so far deal only with nonsmooth convex functions. In this paper, we propose a new algorithm for solving nonsmooth optimization problems that are not assumed to be convex. The algorithm combines the traditional c...

متن کامل

A globally convergent descent method for nonsmooth variational inequalities

We propose a descent method via gap functions for solving nonsmooth variational inequalities with a locally Lipschitz operator. Assuming monotone operator (not necessarily strongly monotone) and bounded domain, we show that the method with an Armijo-type line search is globally convergent. Finally, we report some numerical experiments.

متن کامل

Random Perturbation of the Variable Metric Method for Unconstrained Nonsmooth Nonconvex Optimization

We consider the global optimization of a nonsmooth (nondifferentiable) nonconvex real function. We introduce a variable metric descent method adapted to nonsmooth situations, which is modified by the incorporation of suitable random perturbations. Convergence to a global minimum is established and a simple method for the generation of suitable perturbations is introduced. An algorithm is propos...

متن کامل

Numerical infinitesimals in a variable metric method for convex nonsmooth optimization

The objective of the paper is to evaluate the impact of the infinity computing paradigm on practical solution of nonsmooth unconstrained optimization problems, where the objective function is assumed to be convex and not necessarily differentiable. For such family of problems, the occurrence of discontinuities in the derivatives may result in failures of the algorithms suited for smooth problem...

متن کامل

Convergent Subgradient Methods for Nonsmooth Convex Minimization

In this paper, we develop new subgradient methods for solving nonsmooth convex optimization problems. These methods are the first ones, for which the whole sequence of test points is endowed with the worst-case performance guarantees. The new methods are derived from a relaxed estimating sequences condition, which allows reconstruction of the approximate primal-dual optimal solutions. Our metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Optimization Theory and Applications

سال: 1999

ISSN: 0022-3239,1573-2878

DOI: 10.1023/a:1022650107080